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Involving the intramolecular vibrational coordinates in the potential energy surfaces and bound
states calculations for van der Waals complexes is essential for fully predicting the infrared
spectra of the complexes. In this review, we have summarized our recent researches on the
potential energy surfaces and predicted infrared spectra of the van der Waals complexes
containing a linear molecule and a rare-gas atom or H2 by explicitly involving the dependence
of one intramolecular vibrational coordinate related to the transitions in the infrared spectra.
By incorporating the potential-optimized discrete variable representation grid points for that
coordinate in both potential energy surfaces and bound states calculations for the Kr–H2,
He–N2O, H2–N2O, and H2–CO2 complexes, the shift of the band origin, transition frequencies,
and line intensities in the observed infrared spectra are reproduced well. Examples of other
studies, Ar–HF and H2–OCS, are also reviewed briefly.
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1. Introduction

van der Waals (vdW) complexes have attracted considerable theoretical and
experimental attention because of the importance of vdW interactions in chemistry,
physics, and molecular biology. The spectroscopy of these complexes provides very
useful information for the intermolecular potential energy surface (IPES) and the
dynamics of these weakly bound molecules. Due to the weak intermolecular forces
in vdW complexes, the intermolecular vibrational modes have large amplitudes and
low frequencies so that the global potential energy surface (PES) is required for the
determination of the rovibrational bound states and for the prediction of
the rovibrational spectra. On the other hand, the quality of the PES can also be
justified by comparing the predicted spectra with the high-resolution spectra of the
complexes.

Most theoretical studies have focused on the IPESs of the complexes containing
a linear molecule monomer by taking the monomer as a rigid rotor [1, 2]. Since the
vibrational energy of the monomer is at least two orders of magnitude larger than
the energy of the intermolecular vibration, the inter- and intramolecular vibrations may
be separated under some circumstances. This allows a Born–Oppenheimer-like
separation between the inter- and intramolecular vibrational motions. The rigid
monomer model is generally appropriate for the microwave spectra, which involve
only the ground vibrational state of the linear molecule. However, it might not be
sufficient for predicting the infrared spectra as the transition in at least one
intramolecular vibrational mode is involved. In particular, the shift of the band
origin in the observed infrared spectra cannot be correctly reproduced using the
rigid monomer model [3].

An improved approach is to take into account the dependence of the
intramolecular vibrational coordinate in the potential and dynamical calculations
[4–13]. Because of their huge computational demands, theoretical studies involving
the dependence of the intramolecular vibrations remain challenging. Since the
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number of vdW complexes studied by ab initio and bound states calculations is very
rapidly expanding, we will not try to summarize all the theoretical developments
and applications in this review. Instead, we focus on our recent studies on the PESs
and predicted infrared spectra for vdW complexes containing a linear molecule and
a rare-gas (Rg) atom or H2 by explicitly involving the dependence of one
intramolecular vibrational coordinate which is related to the transition in the
infrared spectra. The fundamental approach of our studies is to incorporate the
potential-optimized discrete variable representation (PODVR) grid points in both
PES and rovibrational bound states calculations without separating the inter- and
intramolecular nuclear motions. The details of the approach used in our studies
and its applications to the Kr–H2, He–N2O, H2–N2O, and H2–CO2

complexes are summarized in the following sections. Examples of other work,
Ar–HF and H2–OCS, are also reviewed briefly.

2. Rg–(linear molecule) vdW complexes

2.1. General perspective

For a weakly bound vdW complex involving a linear molecule and a Rg atom, the usual
theoretical model is to treat the linear molecule as a rigid rotor. In this way, only two
degrees of freedom (R, �), where R is the distance between the Rg atom and the centre of
mass of the linear molecule and � is the enclosed angle between the vector R and the
linear molecule, are required to be included in the construction of the IPES and in the
calculations of the rovibrational bound states and spectra. The earlier methods of
determining the rovibrational states of the atom–diatom vdW systems are the close-
coupling approach in the space-fixed (SF) [4] or body-fixed (BF) [5] frame and the
collocation method [14]. Most of the recent studies are based on the discrete variables
representation (DVR) [15]. Choi and Light [16] proposed an efficient and accurate
method using the DVR to treat the rovibrational states of Ar–HCl.

The supermolecular approach is usually used to produce the intermolecular potential
energy, which is defined as the difference between the energy of the vdW complex and
the sum of the monomer energies. It is believed that an accurate PES for a closed-shell
vdW complex could generally be constructed using the single and double excitation
coupled-cluster theory with a noniterative perturbation treatment of triple excitations
[17] [CCSD(T)] with a large basis set, although valuable insights could be also obtained
employing the fourth-order Møller–Plesset (MP4) perturbation theory in some
cases. One common approach is to use the augmented correlation-consistent n-zeta
(aug-cc-pVnZ) basis set of Woon and Dunning [18, 19] supplemented with an
additional set of bond functions [20–24]. The bond functions are usually placed in the
mid-point of the R vector to eliminate the need for higher angular momentum functions
in the atom-centred basis set. The full counterpoise procedure [25] (FCP) is employed to
correct the basis set superposition error (BSSE). Complementary to the supermolecular
approach is the symmetry-adapted perturbation theory (SAPT) method [26–28], in
which the interaction energy between two monomers is expanded perturbatively in
powers of the intermolecular interaction operator. When truncated at the second order,
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the interaction energy is decomposed into four physically interpretable components:
electrostatics, induction, dispersion, and exchange. Current state of the art of the
ab initio theory of vdW interactions has been reviewed in detail previously [3].

One of the early ab inito IPESs was constructed for He–HF [29] in 1981, which
was found [30] not to correctly reproduce the near-infrared spectrum of the
complex. Subsequently, Moszynski et al. [31] obtained a high-quality IPES of
He–HF with the SAPT method, and the calculated near-infrared spectrum [32] is
consistent with the observed one. Up to now, high-quality ab initio IPESs for a
larger number of complexes are available. Some recent examples are Ar–HF [33],
Ar–HCl [34, 35], He–CO2 [36, 37], He–OCS [38], Ar–OCS [39], Ne–OCS [40–42],
He–N2O [43–45], Ne–N2O [46, 47], Ar–SH [48], Ne–HCN [49], Ar–, Kr–, and
Xe–C2H2 [50], He–HCCCN [51], Ne–HCCCN [52], and Ar–HCCCN [53, 54].
The explicit dependence of the IPES on the intramolecular coordinate is essential to
the prediction of the infrared spectra, vibrational predissociation, or intramolecular
vibrational redistribution. One of the earliest studies including intramolecular
vibrational dependence was the work of Le Roy and van Kranendonk [4]. They
obtained empirical three-dimensional anisotropic intermolecular potentials for the
vdW complexes between Rg and H2 by fitting to the near-infrared spectra of
McKellar and Welsh [55] with a secular determinant method. Tennyson and
Sutcliffe [5] derived an exact Hamitonian for atom–diatom systems by fully
involving the vibration–rotation coupling and applied it to the Ne–H2 and He–HF
[56] complexes. Since then, there have been numerous studies in which the
intramolecular vibrational dependence was included explicitly. The full-dimensional
PESs of high accuracy are available for several Rg–diatom complexes, such as
He–CO [7], Ar–CO [6], Ar–HF [57], He–O2 [58], Ar–H2 [59], and Kr–H2 [60]. For
diatom–diatom complexes, the PESs including all internal degrees of freedom of the
system have been developed for (HF)2 [61] and (HCl)2 [62, 63]. In some cases, the
off-diagonal inter- and intramolecular vibrational coupling is sufficiently small,
so that one can use the potentials that are vibrationally averaged over the
intramolecular coordinates to reduce the dimensionality to the intermolecular
degrees of freedom. The idea of defining the vibrationally averaged potential was
originated by Le Roy et al. [4, 64, 65]. It has been demonstrated for some vdW
complexes, such as Ar–HF [9, 57, 66], Ar–HCl [67], He–CO [7], Ar–CO [6],
He–OCS [38], that the surfaces constructed in this way could reproduce the
observed spectroscopic properties very well.

2.2. Hamiltonian and discretization

The infrared spectra for a vdW complex usually involve a transition in an
intramolecular vibrational coordinate Q. For a diatomic molecule, the vibrational
coordinate Q is identical to the bond length r, while for a polyatomic linear molecule,
Q can be taken as the normal mode which is responsible for the transition.
Within Born–Oppenheimer approximation, the rovibrational Hamiltonian of the
Rg–(linear molecule) complex in the Jacobi coordinates (R, �,Q) at the BF frame can be
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written [5, 68–70] (in atomic units) as,

Ĥ ¼ �
1

2�1

@2

@R2
�

1

2�2

@2

@Q2
þ

1

2IQ
þ

1

2�1R2

� �
�

1

sin �

@

@�
sin �

@

@�
þ

Ĵ2z
sin2 �

 !

þ
1

2�1R2
Ĵ2 � 2Ĵ2z

� �
þ

cot �

2�1R2
Ĵx þ iĴy

� �
þ Ĵx � iĴy

� �h i
� Ĵz

þ
1

2�1R2

@

@�
� Ĵx þ iĴy

� �
� Ĵx � iĴy

� �h i
þ V R, �,Qð Þ,

ð1Þ

where �1 is the reduced mass of the Rg–(linear molecule) dimer, and �2 is the

effective reduced mass for the vibrational mode Q of the linear molecule. IQ is the

rotational moment of inertia of the linear molecule, depending on Q. Ĵx, Ĵy and Ĵz
are the components of the total angular momentum vector Ĵ in the BF frame, in which

the z axis lies along the vector R and the complex is in the xz plane. The above

Hamiltonian contains full inter- and intra-molecular vibration–rotation coupling. The

three-dimensional PES can be divided as,

VðR, �,QÞ ¼ V1ðQÞ þ�VðR, �, QÞ, ð2Þ

where V1(Q) is the potential energy curve of the isolated linear molecule and

�V(R, �,Q) is the IPES between the linear molecule and the Rg atom. The total

rovibrational wavefunction for a rovibrational state n can be expanded as

�JMp
n ðR, �,Q,�,�, �Þ ¼

X
j,K, v1, v2

c
nJp
j,K, v1, v2

 v1 ðRÞ v2ðQÞPK
j ðcos �ÞC

Jp
MKð�, �, �Þ, ð3Þ

where K andM are the projection of the total angular momentum J onto the BF and SF

z axis, respectively. The parity adapted rotational bases C
Jp
MKð�, �, �Þare defined in

terms of the normalized Wigner rotational functions DJ
MK in the three Euler angles

(�,�, �) denoting the orientation of the BF frame with respect to the SF frame,

C
Jp
MKð�, �, �Þ ¼ ½2ð1þ �K0Þ�

�1=2
½DJ�

MK þ ð�1ÞJþKþpDJ�
M�K�: p ¼ 0, 1: ð4Þ

The total parity is given by (–1)Jþp. PK
j ðcos �Þ are the normalized associated Legendre

functions. Because of the large amplitude of the intermolecular vibrational motions and

usually multiple minima in the PES with only low barriers between them, the basis set

 v1ðRÞ for the coordinate R should be taken as a very flexible basis, such as Morse

oscillator functions [5], distributed Gaussian basis [15], tridiagonal Morse basis [71], or

sine basis [72].  v2 ðQÞ are the vibrational wavefunctions for the mode Q of the linear

molecule, which are obtained by solving the following one-dimensional Schrödinger

equation

�
1

2�2

d2

dQ2
þ V1ðQÞ

� �
 v2 ðQÞ ¼ Ev2 v2 ðQÞ: ð5Þ
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The potential V1(Q) can be adjusted to get the calculated transition frequency for the
mode Q in accord with the observed value. The finite basis representation (FBR) in

equation (3) can be conveniently transformed to the DVR in the Jacobi coordinate

(R, �, Q), as described in [71–73]. Any local functions in the Jacobi coordinates are

assumed to be diagonal in the DVR. The matrix elements of the Hamiltonian in the

DVR are given by

�0�0q0K0
� ��Ĥ ��qK

�� 	
¼ �0
� ��� 1

2�1

@2

@R2
�j i � ��0� � �K0K � �q0q þ q0

� ��� 1

2�2

@2

@Q2
q
�� 	 � ��0� � ��0� � �K0K

þ
1

2�1R2
�

þ
1

IQq

� �
�0
� ��ĵ 2 ��� 	 � ��0� � �K0K � �q0q þ

1

2�1R2
�

J Jþ 1ð Þ � 2K2

 �

� ��0� � �K0K

�

� 1þ �K0ð Þ
1=2�þ

JK � �0
� �� ĵþ ��� 	 � �K0Kþ1 � 1þ �K00ð Þ

1=2��
JK � �0

� �� ĵ� ��� 	 � �K0K�1

þ VðRa; �
Kð Þ

� ;QqÞ � ��;� � ��;� � �K0K � �q0q ð6Þ

where ��
JK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J Jþ 1ð Þ � K K� 1ð Þ

p
. The rovibrational energy levels and wavefunctions

can be obtained by diagonalizing the above Hamiltonian matrix. One should note that

the SF basis set could be used as well.

2.3. Diagonalization of the Hamiltonian matrix

Due to unfavourable scaling laws in both arithmetic operations and memory, the
traditional methods for diagonalizing the symmetric matrix, such as Householder

method [74], which generates the complete set of eigenvalues and eigenvectors, become

inadequate when the number of basis functions is large. The Lanczos method [75, 76],

which is a recursive method based on the Krylov subspaces [77], could be employed to

efficiently diagonalize the Hamiltonian matrix in the DVR to produce the energy levels

and wavefunctions of the rovibrational states [78–84]. The basic idea of the Lanczos
method is to recursively generate a small number of vectors that span the eigenspace

of interest. Because of the recursive nature, this method has favourable scaling laws. In

this method [75], the Lanczos vector is updated by the following three-term recursion

formula

 kþ1 ¼
½ðH� �kÞ k � �k�1 k�1�

�k
k ¼ 1, 2, . . . ð7Þ

with

�k ¼  T
k H k � �k�1 k�1ð Þ, ð8Þ

�k ¼ ðH� �kÞ k � �k�1 k�1

�� ��, �0 ¼ 0 ð9Þ
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which forms the tridiagonal Lanczos matrix,

TðKÞ ¼

�1 �1 0
�1 �2 �2

�2
. .
.

�K�1

0 �K�1 �K

0
BBB@

1
CCCA: ð10Þ

The eigenvalues are generated by the diagonalization of the Lanczos matrix, and

the ones near the spectral extreme converge relatively quickly. Since only low-lying

rovibrational states for the vdW complexes are required to predict the infrared

spectra when the vibrationally averaged PESs are used, the Lanczos method

is particularly suitable in this case. In a fully coupled approach, due to high energy

of the monomer vibrational excitation, a very large number of propagation steps

are needed to generate the converged energy levels in the region of the

excited vibrational state of the monomer. The Lanczos method requires only two

vectors to be stored in the memory, since only the action of the Hamiltonian

needs to be evaluated. The eigenfunctions can be obtained using additional Lanczos

recursion with the eigenvectors determined in the first recursion. An

implementation of the Lanczos method, used in our laboratory, has been reviewed

previously [85].

2.4. Fitting of the potential energy surface

In order to interpret the observed infrared spectra of vdW complexes, only the first two

vibrational states of the monomer molecule are of interest. On the other hand, the

intramolecular vibration of the molecule has a much higher frequency than the

intermolecular vibrations. Thus, only a few PODVR grid points for the coordinate Q

are sufficient to represent the intramolecular vibration and lead to the converged

rovibrational energy levels. Accordingly, the IPES �V(R, �,Q) could be constructed

at these PODVR grid points, and the potential for other values of Q can be obtained by

a polynomial interpolation when necessary. One advantage of constructing the PES in

this way is that the potential at the coordinate Q is directly incorporated into the

Hamiltonian in the DVR, thus the possible interpolation errors for Q could be avoided.

The calculated ab initio potential energies can be represented with a cubic spline

interpolation if the points are dense enough. Otherwise, one can fit them to an analytic

form. A widely used form is as follows [51, 54, 86–88],

VðR, �, QiÞ ¼ VshðR, �, QiÞ þ VasðR, �, QiÞ, ð11Þ

where Qi are the PODVR grid points for the coordinate Q. Vsh(R, �,Qi) denotes the

short-range part of the potential and is assumed to be

VshðR, �, QiÞ ¼ GðR, �, QiÞe
Dð�,QiÞ�Bð�,QiÞR ð12Þ
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where G(R, �, Qi), D(�, Qi) and B(�, Qi) are expanded in terms of Legendre polynomials

Pl (cos�),

GðR, �,QiÞ ¼ R�1
X4
i¼0

Ri
X6
l¼0

gliðQiÞ
ð�1ÞlPlðcos �Þffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p , ð13Þ

Dð�,QiÞ ¼
X4
l¼0

dlðQiÞ
ð�1ÞlPlðcos �Þffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p , ð14Þ

Bð�,QiÞ ¼
X4
l¼0

blðQiÞ
ð�1ÞlPlðcos �Þffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p : ð15Þ

The long-range part Vas(R, �,Qi) is expressed as,

VasðR, �,QiÞ ¼ �
X
l, n

fn½Bð�,QiÞR�
Cl

nðQiÞ

Rn

ð�1ÞlPlðcos �Þffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p , ð16Þ

where fn½x� ¼ 1� e�x
Pn

k¼0 x
k=k! is the Tang–Toennies damping function [89] to reduce

the long-range part at short R.

2.5. Calculation of the transition intensity

The dipole moments of the complex in the BF frame can also be obtained from the

electronic structure calculations. Since the complex in the BF frame is embedded in

the xz plane, the component of the dipole moment along the y axis (�y) is equal to

zero. The non-zero components of the dipole moment are denoted as �x and �z along

the BF x and z axes, respectively. The intensity of a transition from an initial

rovibrational state jJpni to a final state J0p0n0
�� 	

at a temperature T can be evaluated as

[1, 90, 91],

IJpn!J0p0n0 / ðEJ0p0n0 � EJpnÞ½e
�EJpn=kT � e�EJ0p0n0 =kT�

X
M

X
M0

X
A¼X0,Y0,Z0

�JMp
n

� ���� �A �
J0M0p0

n0

��� E���2,
ð17Þ

where n is the collective quantum number for the rovibrational state with the

energy of EJpn, k is the Boltzmann constant, �A is the component of the

molecular dipole moment operator along A axis (A¼X0,Y0,Z0) of the SF frame, and

M and M0 are the rotational quantum numbers quantizing the Z0 component of

the total angular momentum of the initial and final states in the SF frame.
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The components of the dipole moment, usually computed in the BF frame (x, y, z), can
be rewritten as

�þ1 ¼ �
1ffiffiffi
2

p ð�x þ i�yÞ, ��1 ¼
1ffiffiffi
2

p ð�x � i�yÞ, �0 ¼ �z: ð18Þ

If one defines analogous quantities in the SF frame, �0
g(the dipole moment in the

SF frame) can be calculated from the following transformation

�0
g ¼

X1
h¼�1

�hD
1
ghð�, �, �Þ, ð19Þ

where D1
gh are the Wigner rotational functions. The rovibrational wavefunction in

equation (3) can be rewritten as

�JMp
n ðR, �, Q, �, �, �Þ ¼

X
K

�
Jnp
K ðR, �, QÞC

Jp
MKð�, �, �Þ ð20Þ

The transition intensity can be then evaluated as

IJpn!J0p0n0 / ð2Jþ 1Þð2J
0

þ 1ÞðEJ0p0n0 � EJpnÞ½e
�EJpn=kT � e�EJ0p0n0=kT�

X
K

X
K

0

½ð1þ �K0Þð1þ �K00Þ�
�1

2

X
h

ð�1ÞK
J J

0

1

�K K
0

h

 !(
þ ð�1ÞJþp J J

0

1

K K
0

h

 !�����
þð�1ÞKþJ0þp0þK0 J J

0

1

�K �K
0

h

 !
þ ð�1ÞJþpþJ0þp0þK0 J J

0

1

K �K
0

h

 !)Z
�

Jnp
K �h�

J0n0p0

K0 d�

�����
2

ð21Þ

where the symbols in large brackets are the Winger 3-j symbols.

2.6. H2–Kr

Over the last 40 years, the H2–Rg complexes have been prototype complexes for
studying the intermolecular interactions and high-resolution spectroscopy [4, 10, 55, 59,
92–96]. Among the H2–Rg complexes, much effort has been focused on the H2–Ar
complex, which is one of the most thoroughly studied atom–diatom complexes [1].
Williams et al. [97] have provided the first complete ab initio PES for H2–Ar with the
SAPT approach, which was subsequently used to calculate the rovibrational spectra of
H2–Ar and D2–Ar [8]. The heavier species such as H2–Kr and H2–Xe are
also interesting. In 1971, McKellar et al. [55] studied the high-resolution spectra of
the H2–Ar, H2–Kr and H2–Xe complexes and observed the spectra due to transitions
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in the D2–Rg complexes. Very recently, McKellar [96] observed the high-resolution
infrared spectra of H2–Kr and D2–Kr and assigned 219 measured line positions from
the spectra. Wei et al. [98] have determined a reliable empirical three-dimensional
PES for H2–Kr by directly fitting to the observed infrared spectra using the exchange-
Coulomb model for the intermolecular interaction energy. In addition, the experimental
second virial and diffusion coefficients [99] were also used to confirm the high quality of
the potential.

We [60] have constructed a three-dimensional ab initio PES of the H2–Kr complex.
The larger number of electrons makes H2–Kr a more challenging task than the other
lighter H2–Rg complexes for ab initio calculations. The intermolecular potential
energies were calculated using the CCSD(T) method with a large basis set including
bond functions. Contour plots of three two-dimensional CCSD(T) IPESs for the H2–Kr
complex are displayed in figure 1. It is clear that the IPESs feature a collinear global
minimum and an energy barrier at the T-shaped geometry. The intermolecular
interaction between H2 and Kr is strengthened for larger r. The global minimum for the
three-dimensional PES has a collinear structure at R¼ 3.7605 Å and r¼ 0.7422 Å with
a well depth of 61.76 cm�1. The saddle point along the angular coordinate was located
at R¼ 3.7475 Å, r¼ 0.7421 Å, and �¼ 90

�

with a barrier height of 12.12 cm�1. Similar to
the empirical three-dimensional PES [98], the ab initio PES for H2–Kr has a very small
angular anisotropy and a weak radial–angular coupling.

The rovibrational energy levels and wavefunctions up to J¼ 6 for the H2–Kr complex
were determined based on the ab initio PES. The potential supports only two
intermolecular vibrational bound states. The calculated transition frequencies in the
region of the H2 fundamental vibrational band were calculated and compared with the
experimental values [96]. Table 1 gives the calculated transition frequencies in the Q1(0)
band of H2–Kr together with the observed values. The experimental and calculated
band origins were taken as the reference. It is shown that the discrepancies of the
calculated transition frequencies are within 3% of the observed values. The calculated
shift of the band origin relative to the vibrational frequency of isolated H2 molecule was
found to be �1.50 cm�1, which is in very good agreement with the experimental value
of �1.706 cm�1.

Figure 1. Contour plots of the intermolecular potential energy of H2–Kr at fixed H2 bond length
(r¼ 0.6050, 0.8607, and 1.1694 Å). Contours are labelled in cm–1.
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2.7. Ar–HF

The Ar–HF complex has been an important prototype system in the study of weak
intermolecular forces. Klemperer et al. [100, 101] observed the first radio-frequency and
microwave spectra of Ar–HF in 1974 and Ar–DF in 1981 in the ground vibrational
state using molecular beam electric resonance spectroscopy, and determined the
structure of the complex. The microwave spectra of Ar–HF and Ar–DF were also
measured using pulsed Fourier transform microwave spectroscopy in a molecular
beam [102] and from a slit supersonic expansion with improved accuracy [103].
Rotational resolved infrared spectra of Ar–HF were respectively obtained by Lovejoy
et al. [104–107] using difference frequency laser spectroscopy in a one-dimensional
supersonic expansion, by Fraser and Pine [108] using the same technique in a gas
cell, by Huang et al. [109] using optothermal molecular-beam spectroscopy, by
Farrell et al. [110] using Nd:YAG/dye laser difference frequency generation, and by
Chang et al. [111, 112] and Chuang et al. [113–115] using intracavity laser-induced
fluorescence in a slit supersonic jet. In addition, Dvorak et al. [116] measured
several bands in the far-infrared spectrum of Ar–HF (v¼ 0) using far-infrared laser
spectroscopy in a slit jet. These spectroscopic investigations have provided a larger
number of energy levels of the vdW stretching and bending modes and the
intramolecular vibration of the HF monomer (v¼ 0–4).

The large body of spectroscopic data for Ar–HF made it possible to determine
reliable empirical PES. Hutson and Howard [117] obtained the first two-dimensional
IPES for Ar interacting with HF(v¼ 0) by fitting to the microwave spectra of Ar–HF
and Ar–DF. Nesbitt et al. [118] used the infrared spectra to obtain another IPES for
Ar interacting with HF(v¼ 1) by a novel direct inversion procedure. Hutson [9]
constructed an accurate IPES including the vibrational dependence for Ar–HF by
fitting to observed data from high-resolution microwave, far-infrared, and infrared
spectroscopy. His three-dimensional PES H6(4, 3, 2) reproduces all the available
spectroscopic data. Since then, this PES has been successfully employed to study the
state-to-state rotationally inelastic scattering of ArþHF [119, 120] and the properties of
Arn–HF clusters [12, 121–131].

Table 1. Calculated [60] and observed [96] transition frequencies in the Q1(0) band of
H2–Kr (in cm�1). The transition frequencies are given with respect to the band origin. l is the

end-over-end rotational quantum number.

l0 ¼ J0 l¼ J Obs Cal. (Obs–Cal.)/Obs

5 6 �5.927 �5.773 2.6%
4 5 �5.041 �4.923 2.3%
3 4 �4.089 �4.000 2.2%
2 3 �3.098 �3.032 2.1%
1 2 �2.078 �2.035 2.1%
0 1 �1.039 �1.021 1.7%
1 0 1.035 1.019 1.5%
2 1 2.070 2.029 2.0%
3 2 3.084 3.020 2.1%
4 3 4.072 3.985 2.1%
5 4 5.025 4.911 2.3%
6 5 5.931 5.783 2.5%
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An early ab inito IPES of Ar–HF was obtained by Kolos et al. [132] using the self-
consistent field (SCF) method. Chang et al. [112] constructed a three-dimensional PES
of Ar–HF by the supermolecular approach using a large standard basis set augmented
with bond functions with the MP4 method. The PES reproduces the anisotropy of the
H6(4, 3, 2) potential and its vibrational dependence, and gives a well depth of 92–95%
of that of the H6(4, 3, 2). Subsequently, Tao and Klemperer [22] investigated the IPES
of Ar–HF with a fixed HF bond length at its vibrationally averaged value and further
performed the calculations including the dependence of the HF bond length to generate
vibrationally averaged IPES for v¼ 0–3. Lotrich et al. [33] determined a two-
dimensional IPES of Ar–HF using the SAPT method with the H–F distance fixed at
its equilibrium value. The ab initio SAPT potential agrees well with the empirical
H6(4,3,2) potential of Hutson [9], including a reasonably similar behaviour of the
anisotropy. The rovibrational energy levels calculated upon the SAPT potential are
within 1 cm�1 of the values predicted from the H6(4, 3, 2) potential for stretch-type
states, while the levels of the states corresponding to bending vibrations agree to a few
cm�1. Later, the SAPT potential was used by Jeziorska et al. [57] to generate several
two-dimensional potentials: the vibrationally averaged potential and the potentials
obtained by fixing r at its equilibrium value re and at the vibrationally averaged
distances. For these two-dimensional potentials, the rovibrational spectra were
evaluated and compared with the spectra obtained upon the three-dimensional SAPT
potential. It was found that the potential obtained by setting r¼hri performs much
better than that corresponding to r¼ re, while the vibrationally averaged potentials are
the most appropriate ones. The calculated shifts of the band origins (red-shifts) for
vibrational excited v¼ 1 and v¼ 2 states upon the vibrationally averaged potentials
were found to be 10.081 and 23.303 cm�1, which are very close to the calculated values
of 10.155 and 23.272 cm�1 upon the full three-dimensional potential and the observed
values of 9.655 [106, 108] and 20.913 cm�1 [110].

Recently, Jankowski [66] proposed a method of generating the full-dimensional PES
for vdW complexes, based on the local expansion of the exact interaction energy surface
in the Taylor series with respect to intramolecular coordinates. This leads to significant
savings in computations of the full-dimensional PES. He also suggested a method
for the direct calculation of the vibrationally averaged IPES without explicit knowledge
of the full-dimensional surface. He further used this approach to obtain the full-
dimensional and vibrationally averaged PESs of Ar–HF with the supermolecular
approach using the CCSD(T) method. It was turned out again that the vibrationally
averaged PES is a very good approximation to the full-dimensional PES.

2.8. He–N2O

N2O is a precursor for the production of nitrogen oxides NOx, which plays an
important role in stratospheric ozone chemistry [133, 134]. It is also a key component in
the atmosphere, which causes greenhouse effect [134]. The intermolecular interactions
in vdW complexes containing He are very weak so that they usually exhibit complicated
energy level patterns and spectra. Nauta and Miller [135] have reported the observed
infrared spectra of N2O in superfluid helium droplets which indicate strong droplet size
dependence for the shift of the vibrational band origin. Xu et al. [136] have presented
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high-resolution microwave and infrared spectra of Hen–N2O clusters, raising interesting
questions regarding to the effect of the bosonic helium environment on the behaviour of

rotational constants and vibrational band origins. Tang and McKellar [137] have

observed the infrared spectra of He–N2O in the v3 vibrational band of N2O using a

tunable diode laser to probe a pulsed supersonic jet expansion. They found that the
4He–N2O complex is close to an oblate symmetric rotor limiting case while 3He–N2O

is an asymmetric rotor. Moreover, their infrared spectra showed that a-type (�Ka¼ 0,

Ka is the projections of J onto the a axis in the coordinates of principal axes of inertia)
transitions are dominant for 3He–N2O, while both a-type and b-type (�Ka¼�1)

transitions are prominent for 4He–N2O.
Three two-dimensional ab initio IPESs and predicted spectra have recently been

reported [43–45] by assuming the N2O molecule as a rigid rotor. Chang et al. [43] have
calculated a two-dimensional IPES of He–N2O at the SAPT level and then computed

the rovibrational energy levels of 4He–N2O upon the surface. By comparing with the

ab initio IPES of He–CO2 [36, 37, 138], they reasoned that the observed larger reduction

of the N2O rotational constants with respect to that of CO2 in superfluid helium
nanodroplets [135] might be related to the greater potential depth in the He–N2O

complex, resulting to a greater probability to attach the helium atoms. This IPES was

further used to study the rovibtaional spectra of the He2–N2O [139] and Hen–N2O [140]

clusters. We [44] have studied the IPES at the CCSD(T) level of theory. By fixing
the vibrational transition origin at the observed value, the observed

transition frequencies were reproduced with the accuracy of about 0.02 cm�1 for both

the 4He–N2O and 3He–N2O complexes, and the simulated infrared spectra were in
consistent with the experimental spectra. Song et al. [45] further constructed another

CCSD(T) IPES for the He–N2O complex using a relatively larger basis set and the

calculated rotational transition frequencies agree well with their recorded microwave

spectra.
In general, the rigid N2O model is believed to be sufficient to study the microwave

spectra but could cause larger discrepancies for infrared spectra. Recently, we [70] have

involved the dependence of the Q3 normal mode for the v3 antisymmetric stretching

vibration of the N2O molecule in the PES of He–N2O and employed the three-
dimensional DVR method to calculate the rovibrational states without separating the

inter- and intramolecular nuclear motions. Figure 2 displays three counter plots of the

CCSD(T) PES for He–N2O. One can see that the IPES at each fixed Q3 point gives a

T-shaped global minimum and a linear local minimum at �¼ 0�. For positive Q3 values,
the IPES has an additional small local minimum at �¼ 180�. The global minimum of

the He–N2O complex on the three-dimensional PES was found to be a T-shaped

structure at R¼ 5.605 a0 and �¼ 87.40
�

with a well depth of 62.34 cm�1. It is clear that
the potential has a large angular anisotropy and strong radial–angular coupling.

The calculated pure vibrational bound states of 4He–N2O on this three-dimensional

PES are given in table 2 together with the results on other two-dimensional PESs.

In this table, ns and nb are respectively the vdW stretching and bending vibrational

quantum numbers, which can only be loosely assigned due to significant mixing
between the two vibrational modes. All the ab initio PESs support five vibrational

bound states for 4He–N2O. The energy levels calculated from the SAPT PES [43] are

lower than others because of its deeper potential well. The calculated vdW excited
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vibrational energy levels at the v3 state of N2O are very similar to those at its ground
state. The predicted shift of the band origin for the ground vdW vibrational state from
our three-dimensional PES was found to be 0.1704 and 0.1551 cm�1 for 4He–N2O and
3He–N2O respectively, which agrees well with the observed values of 0.2532 and
0.2170 cm�1 [137]. Figure 3 shows the contour plots of the wavefunctions for the

vibrational states (0, 0), (0, 1), (0, 2), and (1, 0) of 4He–N2O. While the ground state is
localized in the global minimum, the first excited state (0, 1) that corresponds to the first
excitation in the bending coordinate is distributed over the global and the second
minima, and the higher excited states are distributed more widely. The three lowest
excited states are predominantly bending vibrations. The wavefunction for the first

excited stretching vibrational state (1, 0) also shows some bending characters, due to
strong radial–angular coupling.

We have also calculated the rovibrational energies of He–N2O for J from 0 to 3 and
v¼ 0 and 1 for the ground vdW vibrational state on the three-dimensional PES. The
calculated relative line intensities of the rotational transitions in the v3 region of N2O
were simulated at an estimated rotational temperature of T¼ 2K. A portion of the
calculated infrared spectra of He–N2O are displayed in figure 4 together with the

observed spectra [137]. The strongest transition is 111–000 for 4He–N2O and 101–000
for 3He–N2O. Significant isotopic effect was identified for the He atom, consistent with

Figure 2. Contour plots of the CCSD(T) potential energy surfaces of He–N2O for dimensionless
Q3¼�2.020, 0.0, and 2.020. Contours are labelled in cm�1.

Table 2. Energy levels of the vibrational bound states for 4He–N2O. The energies for the v3
state are relative to the v3 fundamental frequency of the isolated N2O molecule.

Ground state v3 state

(ns, nb) SAPT [43] CCSD(T)[45] CCSD(T)[44] 3D[70] 3D[70]

(0, 0) �23.77 �21.3486 �19.9172 �21.4252 �21.2548
(0, 1) �11.45 �9.3578 �8.9730 �9.3540 �9.3467
(0, 2) �8.83 �7.2259 �6.8669 �7.2367 �7.2031
(0, 3) �5.80 �4.1198 �3.6947 �4.1228 �4.0833
(1, 0) �3.32 �2.1734 �1.7282 �2.2008 �2.1451
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the observed spectra. While the a-type transitions and b-type transitions are both
prominent in 4He–N2O, the b-type transitions are very weak in 3He–N2O. The good
agreement between the calculated and observed transition frequencies and relative
intensities highlights the high quality of the three-dimensional PES.

3. H2–(linear molecule) vdW complexes

Recently, vdW complexes containing H2 have become an active topic of both
experimental and theoretical studies. Different isotopomers of H2 exhibit different
quantum behaviours in various vdW complexes. Among the five familiar
isotopomers of the hydrogen molecule (i.e., paraH2, orthoH2, paraD2, orthoD2,
and HD), paraH2 and orthoD2 have only even rotational angular momentum jH,
while orthoH2 and paraD2 have only odd values of jH. Because of the wide
separation of rotational energy levels, at low temperature, paraH2 and orthoD2 are
at the jH¼ 0 state, while orthoH2 and paraD2 are at the jH¼ 1 state. Among the
H2–(linear molecule) vdW complexes, H2–HF is an early complex for which the
ab inito four-dimensional PES and spectra were studied with the rigid monomer
model [141, 142]. Recently, the vdW complexes containing a member of ‘CO2’
family has been a considerable active subject of research. OCS, N2O and CO2 are
the members of this family. Each molecule of the family has a strong infrared
fundamental stretching vibration and displays similar spectroscopic behaviours. The
infrared spectra of several dimers [143–146] and clusters [147–160] of this family

Figure 3. Contour plots of the wavefunctions for the vibrational states (0, 0), (0, 1), (0, 2), and (1, 0) of
4He–N2O.
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with H2 have been observed in the region of the �3 band of the linear molecule
OCS, N2O, or CO2. In order to fully predict the infrared spectra, five-dimensional
PESs for the H2–OCS [13], H2–N2O [161], and H2–CO2 [162] systems that include
explicit dependence on the Q3 normal vibration of the monomer molecule were
constructed. In our studies [161, 162], the radial discrete variable representation/
angular finite basis representation (radial DVR/angular FBR) method was applied
to calculate the rovibrational states without separating the inter- and intramolecular
nuclear motions. Although the approach (described below) is focused on the
H2–(linear molecule) complexes, it can be straightforwardly extended to any
(linear molecule) dimers in which one of the linear molecules can be assumed as a
rigid rotor.

Figure 4. Calculated [44] and observed [137] line intensities for 3He–N2O and 4He–N2O. The transition
frequencies are relative to the band origin.
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3.1. Hamiltonian without separating the inter- and intramolecular vibrations

In general, the geometry of the H2–(linear molecule) complex can be described in the

Jacobi coordinates (R, r1, ’, �1, �2,Q) [163], as shown in figure 5. R denotes the

separation between the H2 centre of mass and the centre of mass of the linear molecule.

Q is the normal mode for the intramolecular vibration responsible for the infrared

spectra. r1 is the bond length of the H2 molecule, which can be treated as a rigid rotor,

since the vibrational state of H2 has not been changed in the observed infrared spectra.

The bond length of the H2 molecule can be taken as the observed averaged value at its

ground vibrational state, r1h i0 ¼ 0.7666 Å [10]. The angle between the vector R and H2

(or the linear molecule) is defined as �1 (or �2). ’ denotes the dihedral angle between the

two half-planes extending from the vector R to one H atom (labelled as H1 in figure 5)

and one end of the linear molecule. Without separating the inter- and intramolecular

vibrations, the rovibrational Hamiltonian of the H2–(linear molecule) complex can be

written as [1,164] (in atomic units)

Ĥ ¼ �
1

2�1

@2

@R2
�

1

2�2

@2

@Q2
þ B1 ĵ

2

1 þ
ĵ22
2IQ

þ
ðĴ� ĵ1 � ĵ2Þ

2

2�1R2
þ VðR, ’, �1, �2,QÞ ð22Þ

where �1 is the reduced mass of the H2–(linear molecule) dimer, and �2 is the effective

reduced mass for the coordinate Q of the linear molecule. IQ is the rotational moment of

Figure 5. Jacobi coordinates for the H2–(linear molecule) complex.
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inertia of the linear molecule and varies with Q. B1 represents the rotational constant of
the H2 isotopomer, which is taken as the observed value of 59.3220 cm�1 for H2 and

29.9037 cm�1 for D2, as adopted in [13]. Ĵ, ĵ1 and ĵ2 are the angular momentum
operators corresponding to the total and monomer rotations. V is the total potential

energy of the complex and could be divided into two terms,

VðR, ’, �1, �2,QÞ ¼ V1ðQÞ þ�VðR, ’, �1, �2,QÞ, ð23Þ

where �V(R, ’, �1, �1, Q) is the IPES between the linear molecule and the H2 molecule.
The efficient radial DVR/angular FBR method [165, 166] can be employed to

represent the rovibrational Hamiltonian. The vibrational motion for the coordinate R is
represented by sine-DVR [72] and that for the coordinate Q is represented by PODVR

[71, 73]. For the angular part, one can use the FBR method with the parity-adapted BF
basis of the following form [167–169],

j1j2mK; JMp
�� 	

¼ ð2þ 2�K, 0�m, 0Þ
�1=2

½DJ�

MKð�, �, �ÞYj1mð�1,	Þ�j2K�mð�2Þ

þ ð�1ÞJþpDJ�

M�Kð�, �, �ÞYj1�mð�1,	Þ�j2m�Kð�2Þ�, ð24Þ

where DJ
MK, Yj,m, and �j2K�m are the normalized rotational functions, spherical

harmonic functions, and associated Legendre polynomials, respectively. In the FBR,
the matrix elements of the first two angular kinetic energy operators in equation (22) are

diagonal. The third angular kinetic energy operators is calculated as follows,

j01; j
0
2;m

0;K0; JMp
� ��ðĴ� :̂J1 � :̂J2Þ2 j1; j2;m;K; JMp

�� 	
¼ j01; j

0
2;m

0;K0; JMp
� ��Ĵ2 � :̂Jð :̂J1 þ :̂J2Þ � ð

:̂
J1 þ

:̂
J2Þ

:̂
J þ ð

:̂
J1 þ

:̂
J2Þ

2 j1; j2;m;K; JMp
�� 	

¼ ½JðJþ 1Þ � 2K2 þ 2mðK�mÞ þ j1ðj1 þ 1Þ þ j2ðj2 þ 1Þ��ð j01 j1Þ�ð j
0
2 j2Þ�ðK

0;KÞ�ðm0;mÞ

� ð1þ �ðK0; 0Þ�ðm0; 0ÞÞ1=2��
JK�

�
j1m
�ð j01 j1Þ�ð j

0
2 j2Þ�ðK

0;K� 1Þ�ðm0;m� 1Þ

� ð1þ �ðK; 0Þ�ðm; 0ÞÞ1=2�þ
JK�

þ
j1m
�ð j01 j1Þ�ð j

0
2 j2Þ�ðK

0;Kþ 1Þ�ðm0;mþ 1Þ

� ð1þ �ðK0; 0Þ�ðm; 0ÞÞ1=2��
JK�

�
j2K�m�ð j

0
1 j1Þ�ð j

0
2 j2Þ�ðK

0;K� 1Þ�ðm0;mÞ

� ð1þ �ðK; 0Þ�ðm; 0ÞÞ1=2�þ
JK�

þ
j2K�m�ð j

0
1 j1Þ�ð j

0
2 j2Þ�ðK

0;Kþ 1Þ�ðm0;mÞ

þ ð1þ �ðK; 0Þ�ðm; 0ÞÞ1=2�þ
j1m

��
j2K�m�ð j

0
1 j1Þ�ð j

0
2 j2Þ�ðK

0;KÞ�ðm0;mþ 1Þ

þ ð1þ �ðK; 0Þ�ðm0; 0ÞÞ1=2��
j1m

�þ
j2K�m�ð j

0
1 j1Þ�ð j

0
2 j2Þ�ðK

0;KÞ�ðm0;m� 1Þ ð25Þ

The matrix elements of the potential could be calculated conveniently in grid
representation in which the potential energy matrix is diagonal. The transformation

between the FBR and DVR for the angular variables could be easily carried out [170].
The Lanczos method can be employed to efficiently diagonalize the Hamiltonian matrix

to produce the energy levels and wavefunctions of the rovibrational states.
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3.2. Hamiltonian with separating the inter- and intramolecular vibrations

The above approach contains full coupling between the inter- and intramolecular
vibrations. Due to high rovibrational energy levels in the region of the vibrational
excited state of the linear molecule, the convergence of those levels needs a very long
Lanczos propagation. Such calculations are affordable for the Rg–(linear molecule)
complexes, but become very difficult and time-consuming for the H2–(linear molecule)
complexes. It is thus highly desirable to separate the inter- and intramolecular
vibrations if feasible. Since the intramolecular vibrational mode has much higher
frequency than the intermolecular mode in weakly bounded vdW complexes, it is indeed
possible to separate the inter- and intramolecular vibrations if the off-diagonal
vibrational coupling is sufficiently small. In this approximation, the total rovibrational
wavefunction is assumed to have the following direct product form,

�JMp
nv ðR, ’, �1, �2,Q,�,�, �Þ ¼ �JMp

nv ðR, ’, �1, �2,�,�, �Þ vðQÞ, ð26Þ

where v is the quantum number for a specific vibrational state of the linear molecule,
and  vðQÞ are the corresponding vibrational wavefunctions, defined in equation (5). In
particular, one can focus on the ground (v¼ 0) and the first excited (v¼ 1) vibrational
states of the linear molecule only, which are adequate to make the full comparison with
the observed infrared spectra possible. Using equation (26), one can conveniently define
the four-dimensional vibrationally averaged intermolecular PES Vv(R, ’, �1, �2) as [65]

VvðR, ’, �1, �2Þ ¼

Z 1

�1

 vðQÞ�VðR, ’, �1, �2,QÞ vðQÞdQ, ð27Þ

and the vibrationally averaged intermolecular Hamiltonian,

Ĥv ¼ �
1

2�1

@2

@R2
þ B1Ĵ

2

1 þ BvĴ
2

2 þ

ðĴ�
:̂
J1 �

:̂
J2Þ

2�1R2
þ VvðR, ’, �1, �2Þ ð28Þ

where, Bv ¼  v

�
ð2IQÞ

�1
�� �� v

	
. On use of the PODVR, the averaged potential can be

easily calculated as

VvðR, ’, �1, �2Þ ¼
X
k

T2
kv�VðR,’, �1, �2,QkÞ, ð29Þ

where T is the transformation matrix between the FBR and PODVR, Tkv ¼
ffiffiffiffiffiffi
!k

p
 vðQkÞ

where the !k are the weights at the PODVR grid point Qk. The above summation can be
directly performed upon the ab initio points so that the fitting of the potential in the
coordinate Q is not needed. The averaged potentials Vv(R, ’, �1, �2) are very useful for
the simulation of vdW clusters [171, 172]. This approximation of separating the inter-
and intramolecular vibrations by averaging the Hamitonian with the vibrational
wavefunction of the linear molecule is superior to the rigid monomer model for the
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diagonal coupling between the inter- and intramolecular vibrations is included in this
approximation.

3.3. Fitting of the potential energy surface and dipole moment surfaces

The calculated ab initio intermolecular potential energies �V(R, ’, �1, �2, Q) for each
pair of R and Q values could be fitted to the following analytical form [173] in the
angular variables,

�VðR,’, �1, �2,QÞ ¼
X
l1l2l

gl1l2lðR,QÞAl1l2lð�1, �2, ’Þ

" #
exp

X
l1l2l

dl1l2lðR,QÞAl1l2lð�1, �2, ’Þ

" #

ð30Þ

with

Al1l2lð�1, �2, ’Þ ¼
Xl<

m¼�l<

l1 l2 l
m �m 0

� �
Yl1mð�1, ’1ÞYl2,�mð�2, ’2Þ ð31Þ

where ’¼ ’1�’2 and l< ¼ minðl1, l2Þ. l is the vector sum of l1 and l2, and the three
indices satisfy the restrictions that both l1 and lþl1þl2 must be even because of the
symmetric properties of the H2 molecule and the invariance of the potential with respect
to the reflection in the plane containing the z axis and the linear molecule. The
potentials for each pair of R and Q values are fitted separately, and the potential energy
for any arbitrary R can be obtained by a cubic spline interpolation.

In order to calculate the line intensities, the dipole moments of the complex in the BF
frame need to be calculated. For each pair of the R and Q values, the components of the
dipole moments are fitted to the following analytic functions [1],

��ðR, ’, �1, �2,QÞ ¼
X
l1l2l

gl1l2l;�ðR,QÞAl1l2l;�ð�1, �2, ’Þ, �¼ x, y, or z: ð32Þ

For �z, the angular form is just the same as that for the potential energy. For �x and
�y, the angular forms are taken as

Al1l2l;xð�1, �2, ’Þ ¼
X
m

l1 l2
m �mþ 1

l
� 1

� �
�l1mð�1Þ�l2�mþ1ð�2Þ cosðm’Þ, ð33Þ

Al1l2l;yð�1, �2, ’Þ ¼
X
m

l1 l2
m �mþ 1

l
� 1

� �
�l1mð�1Þ�l2�mþ1ð�2Þ sinðm’Þ, ð34Þ

respectively. The above forms satisfy the symmetric properties of the dipole moments of
the complex. The dipole moments for any R can be obtained by a cubic spline
interpolation.
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3.4. Calculation of the transition intensities

In the FBR, the total rovibrational wavefunction for a rovibrational state n can be

rewritten as:

�JMp
n ðR, ’, �1, �2,Q,�,�, �Þ ¼

X
j1, j2,m,K, v1, v2

c
nJp
j1, j2,m,K, v1, v2

’v1 ðRÞ’v2ðQÞ j1j2mK; JMp
�� 	

: ð35Þ

In order to calculate the line intensity, the above equation is rewritten as

�JMp
n ðR, ’, �1, �2,Q,�,�, �Þ ¼

X
K

�
Jnp
KþðR, ’, �1, �2,QÞDJ�

MKð�, �, �Þ
h

þ ð�1ÞJþp�
Jnp
K�ðR, ’, �1, �2,QÞDJ�

M�Kð�, �, �Þ
i

ð36Þ

where

�
Jnp
KþðR, ’, �1, �2,QÞ ¼X

j1, j2,m, v1, v2

ð2þ 2�K, 0�m, 0Þ
�1=2c

nJp
j1, j2,m,K, v1, v2

’v1ðRÞ’v2 ðQÞYj1mð�1,	Þ�j2K�mð�2Þ
ð37Þ

and

�
Jnp
K�ðR, ’, �1, �2,QÞ ¼X
j1, j2,m, v1, v2

ð2þ 2�K, 0�m, 0Þ
�1=2c

nJp
j1, j2,m,K, v1, v2

’v1ðRÞ’v2ðQÞYj1�mð�1,	Þ�j2m�Kð�2Þ ð38Þ

The line intensity of a transition from an initial rovibrational state jJpni to a final

state J0p0n0
�� 	

at a temperature T can be calculated as,

IJpn!J0p0n0 / ð2Jþ 1Þð2J0 þ 1ÞðEJ0p0n0 � EJpnÞ½e
�EJpn=kT � e�EJ0p0n0=kT�

X
K

X
K

0

X
h

ð�1ÞK
J J

0

1

�K K
0

h

 !( Z
�

Jnp�

Kþ �h�
J0n0p0

K0þ d�

�����
þ ð�1ÞJþp J J

0

1

K K
0

h

 !Z
�

Jnp�

K� �h�
J0n0p0

K0þ d�

þð�1ÞJ
0þp0 J J

0

1

�K �K
0

h

 !Z
�

Jnp�

Kþ �h�
J0n0p0

K0� d�

þð�1ÞJþpþJ0þp0 J J
0

1

K �K
0

h

 !Z
�

Jnp�

K� �h�
J0n0p0

K0� d�

)�����
2

: ð39Þ

Potential energy surfaces and predicted infrared spectra for van der Waals complexes 507

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The integrals in equation (39) can be conveniently evaluated in the DVR. In the
approximation of separating the inter- and intramolecular vibrations, the calculations
of the transition intensities require the transition dipole moments from the ground
(v¼ 0) to the first excited (v¼ 1) vibrational state of the linear molecule, which can be
evaluated as

���ðR,’, �1, �2Þ ¼

Z 1

�1

 v¼1ðQÞ��ðR, ’, �1, �2,QÞ v¼0ðQÞdQ: ð40Þ

In the PODVR, the above integral is expressed as,

���ðR, ’, �1, �2Þ ¼
X
k

Tk1��ðR, ’, �1, �2,QÞTk0: ð41Þ

The four-dimensional averaged potential (equation 29) and the transition dipole
moment surface (equation 41), summed over the PODVR grid points of Q, can be
directly calculated upon the ab initio points and then fitted by use of equations (30) and
(32). It is clear that the fittings of the PES and dipole moment surfaces in the
intramolecular coordinate Q can be avoided in this way. For a symmetrical linear
molecule such as CO2,  v¼1ðQÞ is zero for Q¼ 0, so that the dipole moments at Q¼ 0
make no contributions to the transition dipole moments (see equation 40). As a result,
the rigid monomer model could produce qualitatively correct transition intensities
in the infrared spectra related to the one-quantum antisymmetric vibrational transition
of the symmetrical linear molecule only if the appropriate transition dipole functions,
defined in equation (40), are used.

3.5. H2–N2O

In 2002, Tang and McKellar [144] have studied the infrared spectra of five H2–N2O
complexes in the region of the �3 fundamental band of N2O. The observed bands were
predominantly a-type plus some weak b-type transitions in the case of D2–N2O. The
band origins for all the five complexes were found to be blue-shifted, and obvious
regularities were detected. The jH¼ 1 forms have larger shifts than their jH¼ 0
counterparts, and the shifts increase from H2 to HD to D2. The same regularity was also
found in the H2–OCS complexes [143]. About three years later, the high-resolution
infrared spectra of complexes containing the H2 clusters and N2O were recorded in the
�3 region of N2O [158]. Clusters with the size up to n¼ 13 for (paraH2)n –N2O and n¼ 7
for (orthoH2)n –N2O were analysed. Besides the observed P- and R-branch lines, the
paraH2 clusters have no prominent Q-branch features, probably due to the fact that
most of them are in the K¼ 0 levels, for which Q-branches are forbidden. Nevertheless,
strong Q features were observed in the orthoH2 spectra due to an opposite spin
symmetry. The derived vibrational band origins began to shift to blue at n¼ 5 or 6, and
no obvious superfluid effects were indicated for (paraH2)n–N2O clusters up to n¼ 13.

We [161] have studied the PES and infrared spectra of the H2–N2O complexes by
including the Q3 normal mode of the N2O molecule in the calculations of the potential
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energies and the bound states. The global minimum of the complex has a depth of

242.43 cm�1 at Q3¼ 0, R¼ 5.43 a0, �1¼ 91.9� and �2¼ 94.6� for a planar geometry.

Figures 6(a) and (b) show the corresponding contour plots of the potential energy

surface as a function of �1 and �2 at Q3¼�0.5246, R¼ 5.43 a0, ’¼ 0 and 90

respectively. One can see that the global minimum region is rather narrow in the angle

�2 while it is much broader in the coordinate �1. The minimum at ’¼ 90 is turned out to

be a saddle point along the dihedral coordinate ’. Figure 6(c) shows the contour plot of
the PES as a function of �1 and ’ at Q3¼�0.5246, R¼ 5.43 a0, and �2¼ 93.6�.

This figure is very smooth, which shows that the potential energy varies slightly along

the coordinates �1 and ’.
The rovibrational energy levels for the H2–N2O complexes were calculated using the

five-dimensional radial DVR/angular FBR method and Lanczos algorithm without

separating the inter- and intramolecular vibrations. Table 3 gives the energy levels for

the first ten pure vibrational bound states of the H2–N2O complexes. Due to the large

separation of the rotational energy levels for the H2 molecule, the rotational states of

paraH2 and orthoD2 are set to the j1¼ 0 state of the free hydrogen monomer, while that

of orthoH2 and paraD2 at j1¼ 1, although j1 is not a good quantum number in the

complex. The five-dimensional PES supports 8, 16, 14, and 26 bound states with J¼ 0

Figure 6. Contour plots of the potential energy surface of H2–N2O for Q3¼�0.5246. (a) R¼ 5.43 a0 and
	¼ 0. (b) R¼ 5.43 a0 and 	¼ 90. (c) R¼ 5.43 a0 and �2¼ 93.6. The contour spacing is 30 cm�1.

Table 3. Pure vibrational energy levels (in cm�1) for the first ten bound states of four species of H2�N2O.

n paraH2�N2O orthoH2�N2O orthoD2�N2O paraD2�N2O

1 �64.72 �87.02 �84.62 �107.92
2 �35.05 �55.25 �52.95 �74.44
3 �27.61 �41.08 �40.62 �56.86
4 �23.32 �36.71 �36.46 �50.98
5 �18.16 �31.94 �30.28 �46.80
6 �11.04 �29.85 �28.04 �45.01
7 �6.74 �27.24 �23.26 �43.10
8 �0.93 �21.96 �17.80 �38.73
9 �17.28 �13.65 �35.65

10 �12.69 �8.56 �29.94
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for paraH2–, orthoH2–, paraD2–, and orthoD2–N2O, respectively. By analysing the
wavefunctions of the vibrational bound states, it was found that the ground vibrational
state is localized at the global minimum and the first excited state corresponds to the
vdW bending vibration for all the four species. For D2–N2O, the second excited state
has significant vdW stretching character, whereas the higher excited states show a
strong mixing between the bending and stretching vibration modes. For H2–N2O, all
the excited states are characterized as the overtone bending vibrations. The calculated
band shifts for the v3 vibrational state of N2O are given in table 4 together with the
observed values. All the calculated band origins are blue-shifted, and reproduce the
experimental values well, especially for the paraH2–N2O complex.

We have also calculated the frequencies and the corresponding intensities in the
v3 range of N2O to compare with the observed infrared spectra. The calculated relative
line intensities of the rotational transitions in the v3 region of N2O for the vdW ground
vibrational state were simulated at an estimated rotational temperature of T¼ 1.5K.
The calculated infrared spectra of the H2–N2O complexes are displayed in figure 7
together with the observed spectra [144]. The calculated spectra are in good agreement
with the observed spectra, especially for the paraH2–N2O complex. The calculated
transition frequencies agree very well with the observed values with a rms error of about
0.02 cm�1 for the H2–N2O complexes and 0.04 cm�1 for the D2–N2O complexes.
Moreover, significant isotopic effect was found for the H atom. The spectra contain
only a-type transitions for the H2–N2O complexes, while for the D2–N2O complexes,
both the parallel band (�Ka¼ 0) and perpendicular band (�Ka¼�1) are prominent,
and even some a-type transitions with (�Ka¼�2) have significant line strengths.

3.6. H2–CO2

The infrared spectra of H2–CO2 were less studied among all vdW complexes
containing the CO2 family. This is partially because half of the rotational levels are
missing due to the nuclear-spin symmetry of the CO2 molecule so that only fewer
transitions can be observed. McKellar [145] has presented its infrared spectra in the
region of the CO2 �3 antisymmetric stretching vibration using a tunable diode laser
probe and a pulsed supersonic jet expansion. It was demonstrated that orthoH2

complexes bind more strongly than the paraH2 ones and tend to dominate in the cold
dynamic jet environment as other vdW complexes containing hydrogen, like H2–N2O
and H2–OCS. The three paraH2 isotopic species (H2–

12C16O2, H2–
13C16O2, and

H2–
12C18O2) have T-shaped structures with intermolecular distance of about 3.5 Å,

Table 4. Comparison of the observed [144] and calculated [161] shifts (in cm�1)
of the band origin for the species of H2–N2O complexes relative to the free

N2O molecule.

Species Obs Cal.

paraH2–N2O 0.2261 0.2219
orthoH2–N2O 0.6238 0.4236
orthoD2–N2O 0.4534 0.3585
paraD2–N2O 0.7900 0.5437
HD–N2O 0.3180
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and have very similar band origin shifts of about �0.2 cm�1. Due to the interchange
symmetry of the indistinguishable O nuclei, only half of the rotational energy levels are
allowed so that relatively few lines were observed and assigned for the paraH2

complexes. The spectra of orthoH2–CO2 were found to be more complicated and
difficult to be assigned.

Wang et al. [174] have computed a four-dimensional ab initio PES for the H2–CO2

complex at the CCSD(T) level by fixing the geometry of H2 and CO2 at their
vibrationally averaged values. The PES has a global minimum with a well depth of
211.9 cm�1. It supports seven vibrational bound states for paraH2–CO2 and 19 for
orthoH2–CO2. The binding energy of orthoH2–CO2 is 71.7 cm

�1, which is significantly
larger than that of paraH2–CO2 (50.4 cm�1), indicating that the orthoH2 complex is
more stable. The normal isotope of CO2 can only have even values of the angular
momentum corresponding to its rotation in the vibrational ground state due to the
interchange symmetry of the indistinguishable zero-spin 16O nuclei. It was thus
identified that the allowed rotational levels have (Ka, Kc)¼ (even, even) or (odd, odd)
for paraH2–CO2 as compared to (even, odd) or (odd, even) for orthoH2–CO2, which is
the key to the assignment of the observed transitions for orthoH2–CO2 and revealed
that orthoH2 is perpendicular to the intermolecular axis in the complex. They further

Figure 7. Calculated [161] and observed [144] line intensities for the H2–N2O complexes. The transition
frequencies are relative to the band origin.
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calculated the transition frequencies in the infrared spectra region, which agree well
with the observed results.

We [162] have recently constructed a five-dimensional potential energy surface that
explicitly involves the dependence of the Q3 normal mode of the CO2 molecule by the
supermolecular approach with the full counterpoise correction using the CCSD(T)
method. Two equivalent global minima are located at R¼ 2.97 Å, �1¼ 90�, �2¼ 90�,
’¼ 0 or 180� with a well depth of 219.68 cm�1. The saddle point connecting the two
equivalent global minima is at R¼ 3.10 Å, �1¼ 90�, �2¼ 90� and ’¼ 90� with a barrier
height of 82.41 cm�1.

We have also calculated the pure vibrational energy levels for the H2–CO2 complexes
using the five-dimensional radial DVR/angular FBR method and Lanczos algorithm
without and with separating the inter- and intramolecular vibrations. Table 5 presents
the comparison of the pure vdW vibrational levels for paraH2–CO2 separately
determined from the two approaches, and the differences for most of the calculated
energy levels are within 0.01 cm�1. Thus, the off-diagonal inter- and intramolecular
vibrational coupling is proved to be very small in the case of H2–CO2, so that the
separation including the diagonal coupling should be a good approximation with high
accuracy. Our new PES supports 8, 22, 14 and 36 pure vibrational bound states for
paraH2–, orthoH2–, orthoD2–, and paraD2–CO2 respectively. The calculated zero point
energies (ZPEs) for H2–CO2 complexes are very large, for example, the ZPE is
165.29 cm–1 for paraH2–CO2 and 147.07 cm�1 for orthoD2–CO2, which are more than
half of the global well depth. The large ZPE is mainly contributed from the H2 hindered
rotation in the complex, similar to the case of H2–N2O and H2–OCS. Figure 8 shows
the contour plots of probability densities for (R, �2) integrated over other variables for
all the vibrational bound states of paraH2–CO2. Since the complex has only one
minimum for (R, �2), most of the vibrational bound states have clear nodal structures
and could be easily assigned with the vdW stretching (ns) and bending (nb) quantum
numbers. The seventh state corresponds to the first excited vdW stretching vibrational
state with a minor bending character. The highest bound state (0, 6) is dominated by the
bending vibration and has a small mixing of the stretching character.
The calculated shift of the band origin for the �3 vibrational state of CO2 was found
to be �0.113, �0.099, �0.089, and �0.099 cm�1 for the paraH2–, orthoH2–, paraD2–,

Table 5. Comparison of the calculated pure vdW vibrational energy levels (in cm�1) for the
paraH2–CO2 complex in both �3¼ 0 and 1 states of CO2 with (E1) and without (E2) the inter-

and intramolecular vibrational coupling.

Ground state Excited state

(ns, nb) E1 E2 E1 E2

(0, 0) �54.408 �54.390 �54.514 �54.504
(0, 1) �31.129 �31.118 �31.255 �31.248
(0, 2) �25.533 �25.525 �25.656 �25.651
(0, 3) �22.221 �22.214 �22.369 �22.365
(0, 4) �17.245 �17.237 �17.382 �17.376
(0, 5) �9.165 �9.157 �9.290 �9.285
(1, 0) �5.057 �5.052 �5.135 �5.132
(0, 6) �0.726 �0.722 �0.792 �0.790
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and orthoD2–CO2 complexes, respectively, the first two of which are in good agreement
with the observed values of �0.198 and �0.096 cm�1.

The transition frequencies and the corresponding intensities in the v3 range of CO2

were also computed. It was found that the transitions from the J¼ 0 state are not
allowed for orthoH2–CO2 or paraD2–CO2, because their ground vibrational states has
odd symmetry for the exchange of two O atoms. Figure 9 plots the calculated [162]
infrared spectra for paraH2–, orthoH2–, paraD2–, and orthoD2–CO2 at a rotational
temperature of T¼ 1.2K together with the available observed [145] spectra. It is shown
that the calculated transition frequencies and line intensities are consistent with the
available observed values. The transition 101–000 is the strongest for paraH2–CO2 and
orthoD2–CO2, while 202–101 is the strongest for orthoH2–CO2 and paraD2–CO2.
Significant isotopic effect was also revealed from our calculations. For H2–CO2, both
paraH2–CO2 and orthoH2–CO2 are mostly a-type transitions. For D2–CO2, however,
only a-type transitions occur for paraD2–CO2, whereas both a-type and b-type
transitions are significant for orthoD2–CO2.

3.7. H2–OCS

It has been identified that OCS is an ideal probe molecule for studies of helium
clusters and nanodroplets [147–157, 159, 160]. In 2001, Grebenev et al. [150] formed the
vdW clusters paraH2–, HD–, and orthoD2–OCS inside mixed 4He/3He droplets
and measured their high-resolution infrared spectra. The fully resolved rotational
structure of the complexes was found to be that of an asymmetric top. The
dependence of the rotational constants was used to determine the in-plane structure
as well as the out-of-plane amplitude imposed by the superfluid liquid 4He
environment. Subsequently, they [151] analysed the high-resolution infrared spectra

Figure 8. Contour plots of probability densities for all the vibrational bound states of paraH2–CO2.
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of (paraH2)n– and (orthoD2)n–OCS (n¼ 2–8) clusters inside an ultracold superfluid
4He droplet coated with 3He, and revealed the presence of highly symmetric five- and
six-membered donut rings around the axis of the linear OCS from an analysis of the
different Q-branch intensities based solely on their different nuclear spin symmetries
of paraH2 and orthoD2. Later, they [154] measured the high-resolution infrared spectra
of the paraH2–, orthoH2–, orthoD2–, paraD2–, and HD–OCS vdW complexes in liquid
helium droplets using diode laser droplet beam depletion spectroscopy. Tang and
McKellar [143] observed the infrared spectra in the region of the OCS �3 vibration for
five isolated species of H2–OCS complexes in a pulsed supersonic jet expansion using
a tunable diode laser probe, and found that the spectra contain only a-type transitions
as those of prolate asymmetric rotors. The band origins are slightly red-shifted (�0.05
to �0.20 cm�1) relative to that of the free OCS molecule. They [157] also studied the
infrared spectra of (paraH2)n–, (orthoH2)n–, and (HD)n–OCS for n¼ 2–7 in the region of
the C–O stretching vibration. Yu et al. [146] measured the rotational spectra of five
isolated H2–OCS complexes and revealed the intrinsic hyperfine interactions of
hydrogen and the corresponding internal rotational dynamics.

Employing zero temperature quantum Monte Carlo methods, Paesani et al. [171]
determined the structure and energetics of the (paraH2)n–OCS (n¼ 1–8) complexes.
They carried out ground state calculations with importance-sampled rigid body
diffusion Monte Carlo method and excited state calculations with the projection

Figure 9. Calculated [145] and observed [145] line intensities for the H2–CO2 complexes. The transition
frequencies are relative to the band origin.
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operator imaginary time spectral evolution approach. The ground states are found to be
highly structured, with a gradual build up of two axial rings as n increases to 8. Excited
state calculations were made for a range of total cluster angular momentum values, and
the rotational energy levels were fitted to obtain effective rotational and distortion
constants of the clusters using a symmetric top Hamiltonian. Detailed analysis of these
spectroscopic constants indicates that the complexes have an unusually rich variation
in dynamical behaviour, with sizes n¼ 1–2 showing near rigid behaviour, sizes n¼ 3–4
showing extremely floppy behaviour, and the larger sizes n¼ 5–8 showing more rigid
behaviour again. The large values of the distortion constant obtained for n¼ 3–4 are
rationalized in terms of the coupling between the OCS rotations and the ‘breathing’
mode of the first, partially filled ring of paraH2 molecules. They [172] later extended this
study to larger (paraH2)n–OCS clusters with n¼ 9–17. The dependence of the effective
rotational constant on the cluster size shows near-rigid behaviour for clusters up to
n¼ 13, after which a significant departure from the rigid coupling between OCS
rotations and paraH2 motion appears.

In 2006, Paesani and Whaley [13] presented a five-dimensional PES for the H2–OCS
system that includes explicit dependence on the Q3 normal vibration of the OCS
molecule. The potential energies were calculated using the MP4 method with aVTZ
basis set supplemented with a set of bond functions. The global minimum was found to
locate at R¼ 3.23 Å, �1¼ 109.4�, �2¼ 93.0�, and ’¼ 0.0� with the well depth of
�201.67 cm�1. The global minimum region is very narrow along the �1 coordinate while
it is considerably broader in the H2 angle �2. In order to obtain the explicit dependence
of the H2–OCS interaction on a specific vibrational state of the OCS molecule, they
integrated the five-dimensional PES over the Q3 coordinate to generate two
vibrationally adiabatic PESs, which were then used to calculate the bound state
energies for the H2–OCS complexes in both ground (�¼ 0) and first excited (�¼ 1)
states of OCS by using the BOUND code [175] in which the close-coupling equations
are numerically solved as described in [176]. Table 6 gives the energy levels for the first
ten pure vibrational bound states for the five isotopomers with OCS at its �¼ 0 state,
and table 7 presents the dissociation energies and ZPEs for all H2–OCS complexes with
OCS at v¼ 0 state. It is evident that the OCS complexes with H2 isopomers for which
only odd values of angular momentum j2 are allowed (orthoH2 and paraD2) have
significantly greater binding energies than those complexes with H2 isopomers

Table 6. Calculated [13] first ten bound state energy levels (in cm�1) with J¼ 0 for complexes of OCS(�¼ 0)
with different H2 isotopomers.

n paraH2 orthoH2 paraD2 orthoD2 HD

1 �72.560 �85.672 �103.692 �89.519 �82.674
2 �44.232 �69.551 �85.947 �61.384 �54.362
3 �41.671 �61.699 �77.326 �52.882 �48.399
4 �34.561 �52.528 �69.994 �49.435 �43.003
5 �29.794 �45.767 �61.071 �42.090 �36.990
6 �26.258 �40.982 �57.242 �39.562 �34.716
7 �19.371 �40.094 �55.167 �36.202 �29.856
8 �14.849 �38.351 �50.471 �34.364 �26.644
9 �8.831 �36.064 �50.036 �28.567 �20.590

10 �4.615 �33.987 �49.473 �25.720 �17.409
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possessing only even j2 values (paraH2 and orthoD2). This was explained by checking
the dependence of the PES on the H2 relative molecular orientation. Table 7 shows that
for these complexes the ZPE represents from 51% to 64% of the well depth of the PES.

The rovibrational transition energies for all H2–OCS complexes were computed upon
the two vibrationally averaged potential surfaces. Very good agreement with the
observed data is found for all the transition energies, with the calculated values showing
a slight shift of about 0.08 cm�1 towards smaller frequencies. As given in table 6, the
calculated [13] shift of the band origin is in excellent agreement with the observed [143]
value for paraH2–, orthoD2–, and HD–OCS, while the absolute value for orthoH2– and
paraD2–OCS is overestimated. The overall agreement indicates that the PESs accurately
describe the interaction of a vibrating OCS molecule with different H2 isotopmers.

4. Conclusions

It is now feasible to obtain the high-quality intermolecular pair potentials thanks to
growing computer power and more sophisticated ab initio theories. Accurate PESs of
vdW complexes become increasingly important because of their wide applications.
Many reliable IPESs with the rigid monomer model have been constructed using either
the supermolecular methods or the SAPT. The quality of the PESs is verified by
comparing with their high-resolution spectra. Up to date, theoretical studies including
explicitly the intramolecular degrees of freedom are still rather scarce, except for some
simple atom–diatom complexes. Recently, quantum dynamical methods to treat large
amplitude motions in the complex can arrive at up to six fully coupled degrees of
freedom. It now thus becomes possible to include the explicit dependence of the
intramolecular degrees of freedom in the studies of the rovibrational spectra of
the complex.

In this review, we have summarized our very recent studies on the constructions of
PESs and the calculations of the rovibrational bound states and transition intensities
for the Rg– and H2–(linear molecule) vdW complexes. In our studies, the PODVR grid
points were used to represent the intramolecular vibrational coordinate Q. The
potential at the coordinate Q is directly incorporated into the DVR Hamiltonian so that
the fitting for the coordinate Q is completely avoided. With the explicit involvement of
one intramolecular vibrational coordinate that is related to the transition in the infrared
spectra, full prediction of the infrared spectra including the shift of band origin can be
achieved. In the case of very small off-diagonal coupling, the vibrationally averaged

Table 7. Calculated [13] dissociation energy (D0), zero-point energy (ZPE), and shift of the band origin (i�)
for five species of H2–OCS. Experimental data from [143]. All energies in cm�1.

Complex D0 ZPE
��

Theory Experiment

paraH2–OCS 72.5596 129.1147 �0.2099 �0.2049
orthoH2–OCS 85.6718 116.0025 �0.1824 �0.0940
paraD2–OCS 103.6919 97.9825 �0.1659 �0.0461
orthoD2–OCS 89.5194 112.1550 �0.1989 �0.1588
HD–OCS 82.6739 119.0004 �0.2063 �0.1871
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potentials for the ground and excited intramolecular vibrational states can be evaluated
separately upon the ab initio points based on the PODVR grid points, so that the
fittings of the potential and dipole moments for the coordinate Q are not required.
The vibrationally averaged potentials are essential to simulate the spectroscopic
properties of the related vdW clusters. Further developments will be directed to
establish theoretical models for studying vdW complexes containing a non-linear
molecule or an open-shell linear molecule.
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